Dimensions and section properties for WT9X30

Structural sectional properties for a WT9X30 standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationTypeWT
Section NameNameWT9X30
Cross Sectional AreaA8.82 in2
Section Widthb7.56 in
Section Depthd9.12 in
Flange thicknesstf0.695 in
Web thicknesstw0.415 in
Radius of Gyration about X-Xrx2.71 in
Radius of Gyrations about Y-Yry1.68 in
Moment of Inertia about X-XIx64.7 in4
Moment of Intertia about Y-YIy25 in4
Elastic Section Modulus about X-XSx9.29 in3
Elastic Section Modulus about Y-YSy6.63 in3
Plastic Section Modulus about X-XZx16.5 in3
Plastic Section Modulus about Y-YZy10.3 in3
St. Venant Torsional ConstantJ1.08 in4
Warping Torsion ConstantCw2.35 in6
Self Weight of sectionWeight30 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationTypeWT
Section NameNameWT9X30
Cross Sectional AreaA5690 mm2
Section Widthb192 mm
Section Depthd232 mm
Flange thicknesstf17.7 mm
Web thicknesstw10.5 mm
Radius of Gyration about X-Xrx69 mm
Radius of Gyrations about Y-Yry43 mm
Moment of Inertia about X-XIx27000000 mm4
Moment of Intertia about Y-YIy10000000 mm4
Elastic Section Modulus about X-XSx152000 mm3
Elastic Section Modulus about Y-YSy109000 mm3
Plastic Section Modulus about X-XZx270000 mm3
Plastic Section Modulus about Y-YZy169000 mm3
St. Venant Torsional ConstantJ450000 mm4
Warping Torsion ConstantCw1000000000 mm6
Self Weight of sectionWeight45 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A WT9X30 steel section is a standard North American steel section in the WT - Tee Sections category. It weighs 30 lb/ft and has a cross sectional area of 8.82 in2. The height and width of the section are 9.12 in and 7.56 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (8.8) (50)=396.9T_r = ϕ~ A~ f_{y} = 0.9~\left(8.8\right)~\left(50\right) = 396.9 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (16.5) (50)12=61.9M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(16.5\right)~\left(50\right)}{12} = 61.9 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (9.3) (50)12=34.8M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(9.3\right)~\left(50\right)}{12} = 34.8 kip-ft