Dimensions and section properties for WT6X68

Structural sectional properties for a WT6X68 standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationTypeWT
Section NameNameWT6X68
Cross Sectional AreaA20 in2
Section Widthb12.4 in
Section Depthd6.71 in
Flange thicknesstf1.25 in
Web thicknesstw0.79 in
Radius of Gyration about X-Xrx1.59 in
Radius of Gyrations about Y-Yry3.16 in
Moment of Inertia about X-XIx50.6 in4
Moment of Intertia about Y-YIy199 in4
Elastic Section Modulus about X-XSx9.46 in3
Elastic Section Modulus about Y-YSy32.1 in3
Plastic Section Modulus about X-XZx19 in3
Plastic Section Modulus about Y-YZy48.9 in3
St. Venant Torsional ConstantJ9.21 in4
Warping Torsion ConstantCw28.9 in6
Self Weight of sectionWeight68 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationTypeWT
Section NameNameWT6X68
Cross Sectional AreaA12903 mm2
Section Widthb315 mm
Section Depthd170 mm
Flange thicknesstf31.8 mm
Web thicknesstw20.1 mm
Radius of Gyration about X-Xrx40 mm
Radius of Gyrations about Y-Yry80 mm
Moment of Inertia about X-XIx21000000 mm4
Moment of Intertia about Y-YIy83000000 mm4
Elastic Section Modulus about X-XSx155000 mm3
Elastic Section Modulus about Y-YSy526000 mm3
Plastic Section Modulus about X-XZx311000 mm3
Plastic Section Modulus about Y-YZy801000 mm3
St. Venant Torsional ConstantJ3833000 mm4
Warping Torsion ConstantCw8000000000 mm6
Self Weight of sectionWeight101 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A WT6X68 steel section is a standard North American steel section in the WT - Tee Sections category. It weighs 68 lb/ft and has a cross sectional area of 20 in2. The height and width of the section are 6.71 in and 12.4 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (20) (50)=900T_r = ϕ~ A~ f_{y} = 0.9~\left(20\right)~\left(50\right) = 900 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (19) (50)12=71.3M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(19\right)~\left(50\right)}{12} = 71.3 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (9.5) (50)12=35.5M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(9.5\right)~\left(50\right)}{12} = 35.5 kip-ft