Dimensions and section properties for W5X19

Structural sectional properties for a W5X19 standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW5X19
Cross Sectional AreaA5.56 in2
Section Widthb5.03 in
Section Depthd5.15 in
Flange thicknesstf0.43 in
Web thicknesstw0.27 in
Radius of Gyration about X-Xrx2.17 in
Radius of Gyrations about Y-Yry1.28 in
Moment of Inertia about X-XIx26.3 in4
Moment of Intertia about Y-YIy9.13 in4
Elastic Section Modulus about X-XSx10.2 in3
Elastic Section Modulus about Y-YSy3.63 in3
Plastic Section Modulus about X-XZx11.6 in3
Plastic Section Modulus about Y-YZy5.53 in3
St. Venant Torsional ConstantJ0.316 in4
Warping Torsion ConstantCw50.9 in6
Self Weight of sectionWeight19 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW5X19
Cross Sectional AreaA3587 mm2
Section Widthb128 mm
Section Depthd131 mm
Flange thicknesstf10.9 mm
Web thicknesstw6.9 mm
Radius of Gyration about X-Xrx55 mm
Radius of Gyrations about Y-Yry33 mm
Moment of Inertia about X-XIx11000000 mm4
Moment of Intertia about Y-YIy4000000 mm4
Elastic Section Modulus about X-XSx167000 mm3
Elastic Section Modulus about Y-YSy59000 mm3
Plastic Section Modulus about X-XZx190000 mm3
Plastic Section Modulus about Y-YZy91000 mm3
St. Venant Torsional ConstantJ132000 mm4
Warping Torsion ConstantCw14000000000 mm6
Self Weight of sectionWeight28 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A W5X19 steel section is a standard North American steel section in the W - Wide Flange category. It weighs 19 lb/ft and has a cross sectional area of 5.56 in2. The height and width of the section are 5.15 in and 5.03 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (5.6) (50)=250.2T_r = ϕ~ A~ f_{y} = 0.9~\left(5.6\right)~\left(50\right) = 250.2 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (11.6) (50)12=43.5M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(11.6\right)~\left(50\right)}{12} = 43.5 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (10.2) (50)12=38.3M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(10.2\right)~\left(50\right)}{12} = 38.3 kip-ft