Dimensions and section properties for W33X241

Structural sectional properties for a W33X241 standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW33X241
Cross Sectional AreaA71.1 in2
Section Widthb15.9 in
Section Depthd34.2 in
Flange thicknesstf1.4 in
Web thicknesstw0.83 in
Radius of Gyration about X-Xrx14.1 in
Radius of Gyrations about Y-Yry3.62 in
Moment of Inertia about X-XIx14200 in4
Moment of Intertia about Y-YIy933 in4
Elastic Section Modulus about X-XSx831 in3
Elastic Section Modulus about Y-YSy118 in3
Plastic Section Modulus about X-XZx940 in3
Plastic Section Modulus about Y-YZy182 in3
St. Venant Torsional ConstantJ36.2 in4
Warping Torsion ConstantCw251000 in6
Self Weight of sectionWeight241 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW33X241
Cross Sectional AreaA45871 mm2
Section Widthb404 mm
Section Depthd869 mm
Flange thicknesstf35.6 mm
Web thicknesstw21.1 mm
Radius of Gyration about X-Xrx358 mm
Radius of Gyrations about Y-Yry92 mm
Moment of Inertia about X-XIx5910000000 mm4
Moment of Intertia about Y-YIy388000000 mm4
Elastic Section Modulus about X-XSx13618000 mm3
Elastic Section Modulus about Y-YSy1934000 mm3
Plastic Section Modulus about X-XZx15404000 mm3
Plastic Section Modulus about Y-YZy2982000 mm3
St. Venant Torsional ConstantJ15068000 mm4
Warping Torsion ConstantCw67403000000000 mm6
Self Weight of sectionWeight359 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A W33X241 steel section is a standard North American steel section in the W - Wide Flange category. It weighs 241 lb/ft and has a cross sectional area of 71.1 in2. The height and width of the section are 34.2 in and 15.9 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (71.1) (50)=3199.5T_r = ϕ~ A~ f_{y} = 0.9~\left(71.1\right)~\left(50\right) = 3199.5 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (940) (50)12=3525M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(940\right)~\left(50\right)}{12} = 3525 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (831) (50)12=3116.3M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(831\right)~\left(50\right)}{12} = 3116.3 kip-ft