Dimensions and section properties for W24X162

Structural sectional properties for a W24X162 standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW24X162
Cross Sectional AreaA47.8 in2
Section Widthb13 in
Section Depthd25 in
Flange thicknesstf1.22 in
Web thicknesstw0.705 in
Radius of Gyration about X-Xrx10.4 in
Radius of Gyrations about Y-Yry3.05 in
Moment of Inertia about X-XIx5170 in4
Moment of Intertia about Y-YIy443 in4
Elastic Section Modulus about X-XSx414 in3
Elastic Section Modulus about Y-YSy68.4 in3
Plastic Section Modulus about X-XZx468 in3
Plastic Section Modulus about Y-YZy105 in3
St. Venant Torsional ConstantJ18.5 in4
Warping Torsion ConstantCw62600 in6
Self Weight of sectionWeight162 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW24X162
Cross Sectional AreaA30839 mm2
Section Widthb330 mm
Section Depthd635 mm
Flange thicknesstf31 mm
Web thicknesstw17.9 mm
Radius of Gyration about X-Xrx264 mm
Radius of Gyrations about Y-Yry77 mm
Moment of Inertia about X-XIx2152000000 mm4
Moment of Intertia about Y-YIy184000000 mm4
Elastic Section Modulus about X-XSx6784000 mm3
Elastic Section Modulus about Y-YSy1121000 mm3
Plastic Section Modulus about X-XZx7669000 mm3
Plastic Section Modulus about Y-YZy1721000 mm3
St. Venant Torsional ConstantJ7700000 mm4
Warping Torsion ConstantCw16810000000000 mm6
Self Weight of sectionWeight241 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A W24X162 steel section is a standard North American steel section in the W - Wide Flange category. It weighs 162 lb/ft and has a cross sectional area of 47.8 in2. The height and width of the section are 25 in and 13 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (47.8) (50)=2151T_r = ϕ~ A~ f_{y} = 0.9~\left(47.8\right)~\left(50\right) = 2151 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (468) (50)12=1755M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(468\right)~\left(50\right)}{12} = 1755 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (414) (50)12=1552.5M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(414\right)~\left(50\right)}{12} = 1552.5 kip-ft