Dimensions and section properties for W18X175

Structural sectional properties for a W18X175 standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW18X175
Cross Sectional AreaA51.4 in2
Section Widthb11.4 in
Section Depthd20 in
Flange thicknesstf1.59 in
Web thicknesstw0.89 in
Radius of Gyration about X-Xrx8.2 in
Radius of Gyrations about Y-Yry2.76 in
Moment of Inertia about X-XIx3450 in4
Moment of Intertia about Y-YIy391 in4
Elastic Section Modulus about X-XSx344 in3
Elastic Section Modulus about Y-YSy68.8 in3
Plastic Section Modulus about X-XZx398 in3
Plastic Section Modulus about Y-YZy106 in3
St. Venant Torsional ConstantJ33.8 in4
Warping Torsion ConstantCw33300 in6
Self Weight of sectionWeight175 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW18X175
Cross Sectional AreaA33161 mm2
Section Widthb290 mm
Section Depthd508 mm
Flange thicknesstf40.4 mm
Web thicknesstw22.6 mm
Radius of Gyration about X-Xrx208 mm
Radius of Gyrations about Y-Yry70 mm
Moment of Inertia about X-XIx1436000000 mm4
Moment of Intertia about Y-YIy163000000 mm4
Elastic Section Modulus about X-XSx5637000 mm3
Elastic Section Modulus about Y-YSy1127000 mm3
Plastic Section Modulus about X-XZx6522000 mm3
Plastic Section Modulus about Y-YZy1737000 mm3
St. Venant Torsional ConstantJ14069000 mm4
Warping Torsion ConstantCw8942000000000 mm6
Self Weight of sectionWeight260 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A W18X175 steel section is a standard North American steel section in the W - Wide Flange category. It weighs 175 lb/ft and has a cross sectional area of 51.4 in2. The height and width of the section are 20 in and 11.4 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (51.4) (50)=2313T_r = ϕ~ A~ f_{y} = 0.9~\left(51.4\right)~\left(50\right) = 2313 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (398) (50)12=1492.5M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(398\right)~\left(50\right)}{12} = 1492.5 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (344) (50)12=1290M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(344\right)~\left(50\right)}{12} = 1290 kip-ft