Dimensions and section properties for W14X68

Structural sectional properties for a W14X68 standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW14X68
Cross Sectional AreaA20 in2
Section Widthb10 in
Section Depthd14 in
Flange thicknesstf0.72 in
Web thicknesstw0.415 in
Radius of Gyration about X-Xrx6.01 in
Radius of Gyrations about Y-Yry2.46 in
Moment of Inertia about X-XIx722 in4
Moment of Intertia about Y-YIy121 in4
Elastic Section Modulus about X-XSx103 in3
Elastic Section Modulus about Y-YSy24.2 in3
Plastic Section Modulus about X-XZx115 in3
Plastic Section Modulus about Y-YZy36.9 in3
St. Venant Torsional ConstantJ3.01 in4
Warping Torsion ConstantCw5380 in6
Self Weight of sectionWeight68 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationTypeW
Section NameNameW14X68
Cross Sectional AreaA12903 mm2
Section Widthb254 mm
Section Depthd356 mm
Flange thicknesstf18.3 mm
Web thicknesstw10.5 mm
Radius of Gyration about X-Xrx153 mm
Radius of Gyrations about Y-Yry62 mm
Moment of Inertia about X-XIx301000000 mm4
Moment of Intertia about Y-YIy50000000 mm4
Elastic Section Modulus about X-XSx1688000 mm3
Elastic Section Modulus about Y-YSy397000 mm3
Plastic Section Modulus about X-XZx1885000 mm3
Plastic Section Modulus about Y-YZy605000 mm3
St. Venant Torsional ConstantJ1253000 mm4
Warping Torsion ConstantCw1445000000000 mm6
Self Weight of sectionWeight101 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A W14X68 steel section is a standard North American steel section in the W - Wide Flange category. It weighs 68 lb/ft and has a cross sectional area of 20 in2. The height and width of the section are 14 in and 10 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (20) (50)=900T_r = ϕ~ A~ f_{y} = 0.9~\left(20\right)~\left(50\right) = 900 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (115) (50)12=431.3M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(115\right)~\left(50\right)}{12} = 431.3 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (103) (50)12=386.3M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(103\right)~\left(50\right)}{12} = 386.3 kip-ft