Dimensions and section properties for 2L7X4X0.4375X0.375LLBB

Structural sectional properties for a 2L7X4X0.4375X0.375LLBB standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationType2L
Section NameName2L7X4X0.4375X0.375LLBB
Cross Sectional AreaA9.26 in2
Section Widthb7 in
Section Depthd4 in
Flange thicknesstf0.438 in
Web thicknesstw0.438 in
Radius of Gyration about X-Xrx2.26 in
Radius of Gyrations about Y-Yry1.55 in
Moment of Inertia about X-XIx47.2 in4
Moment of Intertia about Y-YIy22.2 in4
Elastic Section Modulus about X-XSx10.2 in3
Elastic Section Modulus about Y-YSy5.3 in3
Plastic Section Modulus about X-XZx18.1 in3
Plastic Section Modulus about Y-YZy9.94 in3
Self Weight of sectionWeight31.4 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationType2L
Section NameName2L7X4X0.4375X0.375LLBB
Cross Sectional AreaA5974 mm2
Section Widthb178 mm
Section Depthd102 mm
Flange thicknesstf11.1 mm
Web thicknesstw11.1 mm
Radius of Gyration about X-Xrx57 mm
Radius of Gyrations about Y-Yry39 mm
Moment of Inertia about X-XIx20000000 mm4
Moment of Intertia about Y-YIy9000000 mm4
Elastic Section Modulus about X-XSx167000 mm3
Elastic Section Modulus about Y-YSy87000 mm3
Plastic Section Modulus about X-XZx297000 mm3
Plastic Section Modulus about Y-YZy163000 mm3
St. Venant Torsional ConstantJNaN mm4
Self Weight of sectionWeight47 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A 2L7X4X0.4375X0.375LLBB steel section is a standard North American steel section in the 2L - Doubled Angles category. It weighs 31.4 lb/ft and has a cross sectional area of 9.26 in2. The height and width of the section are 4 in and 7 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (9.3) (50)=416.7T_r = ϕ~ A~ f_{y} = 0.9~\left(9.3\right)~\left(50\right) = 416.7 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (18.1) (50)12=67.9M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(18.1\right)~\left(50\right)}{12} = 67.9 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (10.2) (50)12=38.3M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(10.2\right)~\left(50\right)}{12} = 38.3 kip-ft