Dimensions and section properties for 2L5X3.5X0.250SLBB

Structural sectional properties for a 2L5X3.5X0.250SLBB standard steel section


steel section diagram

US Customary Units

DescriptionSymbolValue
Shape Category / DesignationType2L
Section NameName2L5X3.5X0.250SLBB
Cross Sectional AreaA4.14 in2
Section Widthb5 in
Section Depthd3.5 in
Flange thicknesstf0.25 in
Web thicknesstw0.25 in
Radius of Gyration about X-Xrx1.03 in
Radius of Gyrations about Y-Yry2.23 in
Moment of Inertia about X-XIx4.4 in4
Moment of Intertia about Y-YIy20.6 in4
Elastic Section Modulus about X-XSx1.63 in3
Elastic Section Modulus about Y-YSy4.12 in3
Plastic Section Modulus about X-XZx2.85 in3
Plastic Section Modulus about Y-YZy6.42 in3
Self Weight of sectionWeight14 lb/ft

Metric Units

DescriptionSymbolValue
Shape Category / DesignationType2L
Section NameName2L5X3.5X0.250SLBB
Cross Sectional AreaA2671 mm2
Section Widthb127 mm
Section Depthd89 mm
Flange thicknesstf6.4 mm
Web thicknesstw6.4 mm
Radius of Gyration about X-Xrx26 mm
Radius of Gyrations about Y-Yry57 mm
Moment of Inertia about X-XIx2000000 mm4
Moment of Intertia about Y-YIy9000000 mm4
Elastic Section Modulus about X-XSx27000 mm3
Elastic Section Modulus about Y-YSy68000 mm3
Plastic Section Modulus about X-XZx47000 mm3
Plastic Section Modulus about Y-YZy105000 mm3
St. Venant Torsional ConstantJNaN mm4
Self Weight of sectionWeight21 kg/m

Note: Metric units have been converted from tabulated imperial values and rounded to a reasonable number of significant figures.

A 2L5X3.5X0.250SLBB steel section is a standard North American steel section in the 2L - Doubled Angles category. It weighs 14 lb/ft and has a cross sectional area of 4.14 in2. The height and width of the section are 3.5 in and 5 in respectively.

The section has a tensile yield capacity of:

Tr=ϕ A fy=0.9 (4.1) (50)=186.3T_r = ϕ~ A~ f_{y} = 0.9~\left(4.1\right)~\left(50\right) = 186.3 kip

The section has a flexural plastic moment capacity of:

Mr,p=ϕ Zx fy12=0.9 (2.9) (50)12=10.7M_{r,p} = \frac{ ϕ~ Z_{x}~ f_{y}}{12} = \frac{0.9~\left(2.9\right)~\left(50\right)}{12} = 10.7 kip-ft

The section has a flexural elastic moment capacity of:

Mr,y=ϕ Sx fy12=0.9 (1.6) (50)12=6.1M_{r,y} = \frac{ ϕ~ S_{x}~ f_{y}}{12} = \frac{0.9~\left(1.6\right)~\left(50\right)}{12} = 6.1 kip-ft